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Abstract
Defect lines in conformal field theory can be perturbed by chiral defect fields. If
the unperturbed defects satisfy su(2)-type fusion rules, the operators associated
with the perturbed defects are shown to obey functional relations known from
the study of integrable models as T-systems. The procedure is illustrated for
Virasoro minimal models and for Liouville theory.

PACS numbers: 11.25.Hf, 02.30.Ik, 05.70.Jk

Dedicated to the memory of Alexei Zamolodchikov

1. Introduction and summary

This paper is concerned with purely transmitting defect lines in the two-dimensional conformal
field theory (CFT), where the defect line itself may break conformal invariance. Examples of
such defects can be obtained by perturbing a purely transmitting conformal defect by a chiral
defect field [1–3]. If the perturbation is relevant, this results in a renormalization group (RG)
flow between two purely transmitting conformal defects.

Purely transmitting conformal defects are useful because they allow one to deduce
symmetries and dualities of the CFT [4, 5]. In particular, the defects act on the set of conformal
boundary conditions, and they also provide relations among the RG flows between different
boundary conditions [6]. Conversely, by acting with a perturbed defect on unperturbed
conformal boundary conditions, a single defect RG flow induces a whole series of boundary
RG flows. In this sense, defect flows are ‘universal RG flows’ for boundary conditions [2].

Another observation related to boundary RG flows is that in certain cases (e.g. integrable
boundary perturbations in minimal models) the disc amplitudes for the perturbed boundary
conditions obey a system of functional relations [7, 8]—called fusion hierarchy or T-system—
known from the study of integrable lattice models and integrable continuum field theories,
see, e.g. [7, 9–12]. The usefulness of these functional relations lies in the fact that, together

1751-8113/08/105401+21$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/10/105401
mailto:ingo.runkel@kcl.ac.uk
http://stacks.iop.org/JPhysA/41/105401


J. Phys. A: Math. Theor. 41 (2008) 105401 I Runkel

(a)

0 L

b

a

iy

ix

(b)

0 L

iy

Figure 1. In this figure, the lines iR and iR + L are identified. (a) The correlator of the two
topological defects a, b inserted on the cylinder at ix and iy does not depend on x and y. (b) In the
limit x → y, one obtains the fused defect a � b.

with certain assumptions on their analytic properties, they can be solved in terms of a set of
integral equations known as the thermodynamic Bethe ansatz [13], see [16] for a review.

In this paper, a simple proof is given that—under certain conditions to be described
in detail below—the perturbed defect operators themselves satisfy the T-system functional
relations. This result can be used to explain the behaviour of the perturbed disc amplitudes,
but it contains much more information than that since the defect operators act on all bulk
states, not just on the ground state. It also offers an alternative point of view on the T-
operators defined in [7, 14, 15], which can be thought of as a ‘chiral part’ of a perturbed defect
operator. The arguments leading to the functional relations stay within CFT and do not rely
on results from integrable scattering theories. One may therefore hope that this result can
further clarify the ‘ODE/IM correspondence’, an interesting link between the conformal limit
of two-dimensional integrable models and the spectral theory of ordinary differential equation
[16–18].

Let us look in more detail at the properties of defects and their perturbations. A defect
line is a line on the surface on which the CFT is defined where fields can have discontinuities
or singularities. Just as for surfaces with boundaries one must specify a boundary condition, a
defect is characterized by a ‘defect condition’ or defect type. Consider the CFT on a cylinder,
and denote by H the space of states on a circle. A defect line of some type a wound around
the cylinder then gives rise to a linear operator Da on H, called defect operator. The defect is
conformal, iff [Lm −Lm,Da] = 0 for all m ∈ Z, and is called a purely transmitting conformal
defect, or a topological defect, iff the stronger condition [Lm,Da] = [Lm,Da] = 0 holds. It is
also natural to consider defect lines which are actually interfaces joining two different CFTs,
see, e.g. [3, 5, 19, 20], but we will not use this here. Note, however, that a conformal boundary
condition is a special type of defect, namely a conformal defect that joins a given CFT to the
trivial CFT (which has c = 0 and whose only state is the vacuum).

The Hamiltonian of a CFT on a cylinder of circumference L is H(L) = 2π
L

(
L0 +L0 − c

12

)
.

Since topological defects obey in particular [H(L),Da] = 0, correlators do not depend on the
precise point at which a topological defect loop is inserted on the cylinder. If two topological
defects of type a and type b are inserted on adjacent loops on the cylinder, they can be moved
arbitrarily close to each other without encountering a singularity. This results in a new ‘fused’
defect whose type will be denoted by a � b, see figure 1. Even if the two defects a, b we
started from are elementary (i.e. they cannot be written as a superposition of other defects),
the fused defect is typically not, and one has a decomposition a � b = c1 + · · · + cn in terms of
elementary defects ck . This gives rise to the fusion algebra of topological defects [5, 21–25].
For the defect operators this decomposition implies the identity Da�b = Dc1 + · · · + Dcn

.
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As already noted in [1, 2], the property [H(L),Da] = 0—which was necessary to define
the fusion procedure—continues to hold if we perturb the topological defect by a chiral defect
field φ(z) (i.e. a defect field satisfying ∂

∂z̄
φ(z) = 0). Let us denote the perturbed defect by

Da(λφ), with λ ∈ C the coupling constant. In section 2, I present a method to derive functional
equations for the operators Da(λφ) in a subset of all topological defects where the defects
have su(2)-type fusion rules, and for which the perturbing field has conformal weight < 1

2 ,
so that no regularization is required. Some examples of models where such subsets exist are
non-unitary Virasoro minimal models, Liouville theory and the su(2)-WZW model for level
k > 2.

Let us consider the minimal model M(p, p′) for concreteness. The elementary topological
defects are labelled by entries (r, s) in the Kac-table (modulo the usual Z2-identification),
where 1 � r < p and 1 � s < p′. The fusion of these defects is just given by the fusion of
the corresponding irreducible representations [21]. The subset we are interested in consists
of the defects labelled by (1, s), and for s = 2, . . . , p′ − 2 these allow for a chiral defect φ

with weight h1,3 = −1 + 2p/p′. The condition h1,3 < 1
2 thus holds whenever p/p′ < 3/4

(i.e. never for unitary models). It is shown in section 3.1 that the perturbed defect operators
mutually commute,

[D(r,s)(λφ),D(r ′,s ′)(µφ)] = 0 (1.1)

for all (r, s) and (r ′, s ′) in the Kac-table, and for all λ,µ ∈ C, and that the defect operators
labelled (1, s) obey

D(1,2)(λφ)D(1,s)(q
εsλφ) = D(1,s−1)(q

ε(s+1)λφ) + D(1,s+1)(q
ε(s−1)λφ) (1.2)

for q = eπ ip/p′
, s = 2, . . . , p′ − 2, ε = ±1 and λ ∈ C. In this equation it is understood that

for the two defects (1, 1) and (1, p′ −1) which do not support the chiral defect field φ, Da(λφ)

just stands for the unperturbed defect Da . In particular, (1, 1) is the invisible defect, meaning
there is actually no defect line present. The defect fields on the (1, 1)-defect are precisely the
bulk fields, and the only bulk fields with anti-holomorphic weight zero are descendents of the
vacuum. Also note that D(1,1) is just the identity operator on the space of states H. From (1.2)
is straightforward to deduce the functional relation of the T-system,

D(1,s)(qλφ)D(1,s)(q
−1λφ) = id + D(1,s−1)(λφ)D(1,s+1)(λφ). (1.3)

The defect operators D(1,s)(λφ) thus behave similarly to fused row-transfer matrices in RSOS
lattice models, which obey functional relations analogous to (1.2) and (1.3) [10, 11]. The
D(1,s)(λφ) are also close cousins of the T-operators constructed in [7, 14, 15], which equally
obey (1.2) and (1.3).1

As reviewed in [16], in order to solve (1.3) one uses the fact that due to (1.1) all D(r,s)(λφ)

can be simultaneously diagonalized, and so the eigenvectors can be chosen to be independent of
λ. The resulting functional equations for the eigenvalues can be turned into integral equations
that can be solved very efficiently numerically.

It is in fact surprisingly easy to arrive at (1.2). Consider the composition
D(1,2)(λφ)D(1,s)(µφ) for arbitrary λ,µ ∈ C. One first needs to note that when fusing
the perturbed defects (1, 2) and (1, s) one obtains the superposition (1, s − 1) + (1, s + 1)

perturbed by defect fields on (1, s − 1) and (1, s + 1), as well as by defect changing fields
which change the defect type from (1, s − 1) to (1, s + 1) and vice versa. The defect changing
fields stop us from writing the operator for the perturbed defect (1, s − 1) + (1, s + 1) as a

1 Equations (4.13) and (4.14) of [15] are of the form (1.2) when setting β2 = p/p′ (cf (1.27) in [15]) and replacing
Tj (λ) → D(1,2j+1)(λ

2φ). When comparing to [7, 14, 15], it should be kept in mind that the T-operators are chiral
operators acting on individual representations, while the D(1,s)(λφ) act on the whole space of bulk states. The precise
relation between the two remains to be understood.
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sum of two defect operators D(1,s−1)(λ
′φ) + D(1,s+1)(λ

′′φ) for some λ′, λ′′ ∈ C. However, it
turns out to be possible to choose the constant µ in terms of λ such that the defect changing
fields are completely suppressed, and only the defect preserving fields contribute to the defect
operators. This results in identity (1.2). On the other hand, for defects a, b which fuse to three
or more elementary defects, a � b = c1 + c2 + c3 + · · ·, this construction will typically fail,
because there is only one parameter, µ, to adjust, and this is generally not enough to make
all the couplings to defect changing fields vanish. (Incidentally, defect changing fields always
come in pairs, and so even if a � b = c1 + c2, there are still two different defect changing
fields. But we will see in section 2.3 that it is enough to be able to set one of the two couplings
to zero.)

In order to make the above reasoning precise, one needs a good control over the OPE of
defect fields and over the effect of fusing defects in the presence of defect field insertions.
Both are available in the TFT approach to rational CFT [26, 27]. Specifically, we will need
the results from [5, 28].

As an application, let us look at some consequences of (1.3) on amplitudes involving
perturbed boundary conditions. Consider a cylinder of circumference L and length R, with
conformal boundary conditions at either end labelled by the Kac-label (1, 1). Inside the
cylinder, place two defect loops corresponding to the operators D(1,s)(qλφ) and D(1,s)(q

−1λφ).
One can now fuse each of the two defects with one of the conformal boundaries, resulting in the
boundary condition (1, s) perturbed by qλφ and q−1λφ (with the appropriate normalization
for the h1,3-boundary field φ). This results in the identity

Z(1,s)(1,s)(qλ, q−1λ) = Z(1,1)(1,1) + Z(1,s−1)(1,s+1)(λ, λ) (1.4)

for the cylinder partition functions, which has already been observed in [29] for the (massive)
Lee–Yang model. In expression Zx,y(λ, µ), x and y refer to the conformal boundary condition,
and λ and µ are the coupling constants for the perturbation by φ on either of the two boundaries.
In the R → ∞ limit, each cylinder partition function factors into a product of two disc
amplitudes, and one obtains the statement that the perturbed disc amplitudes satisfy the T-
system functional relation.

The rest of the paper is organized as follows. In section 2 the functional equation for
defects with su(2)-type fusion rules are derived. In section 3 minimal models and Liouville
theory are treated as examples, and section 4 contains the conclusions.

2. Functional equations for defects operators

Fix a rational CFT, and denote by V its chiral algebra. For example, choose a minimal model
M(p, p′) and let V be the Virasoro (vertex-)algebra, or take the su(2)-WZW model at level k
and for V the (vertex algebra constructed from the) affine Lie algebra ŝu(2)k . Denote by I the
finite set indexing the irreducible representations of V and by {Ri | i ∈ I} the corresponding
representations. R0 will refer to the vacuum representation, i.e. the representation of V on
itself, R0 = V .

I will make the simplifying assumptions that the holomorphic and anti-holomorphic chiral
algebra are identical, and that the fusion rule coefficients of the irreducible representations of
V are either 0 or 1,

Nk
ij ∈ {0, 1}. (2.1)
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Although the methods presented below can be applied to general rational CFTs, in the present
paper only the Cardy case is considered. In particular, the space of states on a circle is given
by

H =
⊕
k∈I

Rk ⊗ R̄k̄. (2.2)

The notation R̄ indicates that the anti-holomorphic copy V̄ of V acts on this factor of the tensor
product, and k̄ labels the representation conjugate to Rk in the sense that it is the unique index
for which N0

kk̄
= 1.

2.1. Unperturbed topological defects

Denote the modes generating the holomorphic copy of V by Wm and those generating the
anti-holomorphic copy by Wm. In this section we will consider only the defects that preserve
V ⊗ V̄ , i.e. whose defect operators Da on the cylinder obey

[Wm,Da] = 0 = [Wm,Da] (2.3)

for all modes Wm and Wm. Since V contains the Virasoro algebra, such defects are in particular
topological. From here on ‘unperturbed defect’ or just ‘defect’ refers to a defect satisfying
(2.3).

It turns out that just as for boundary conditions [30], in the Cardy case defects are labelled
by irreducible representations of V [21]. Because of (2.3) the defect operator Da for a ∈ I will
act as a multiple of the identity on each sector Rk ⊗ R̄k̄ of the space of states. The coefficients
can be given in terms of the modular S-matrix, and the resulting fusion rules of the defects are
just the fusion rules for the representations of V [5, 22],

Da|Rk⊗R̄k̄
= Sak

S0k

idRk⊗R̄k̄
and a � b =

∑
c∈I

Nab
cc. (2.4)

Defect lines can form junctions, for example when fusing two defects not along their entire
length, but only along a segment. (A defect junction can alternatively be thought of as an
insertion of a ‘defect-joining field’ of left/right conformal dimension 0.) The space of possible
couplings joining two incoming defects a and b to an outgoing defect c is Nc

ab-dimensional
[5]. The same holds when the roles of incoming and outgoing defects are reversed. In the
nonzero coupling spaces (i.e. if Nc

ab = 1) we choose, once and for all, basis elements such that

c c

a

b

= c
. (2.5)

In words, a ‘defect bubble’ without defect field insertions and which does not enclose any bulk
fields can be omitted from the defect line. Identity (2.5), as well as similar identities below, are
valid locally on the surface under consideration in the sense that if the left-hand side appears
as part of a correlator, it can be replaced by the right-hand side without affecting the value of
the correlator. Next, when fusing two defects along a segment one has the identity [5]

a

b
=

∑
c∈I

a

b

a

b

c

. (2.6)

Here it is understood that the coupling of the defects a and b to c is zero if Nc
ab = 0.
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The space Ha←b of defect fields that change a defect of type b to a defect of type a
decomposes into representations of V ⊗ V̄ as [21, 22, 25, 28]

Ha←b =
⊕
i,j∈I

(Ri ⊗ R̄j )
⊕(

∑
c∈I Nia

cNcj
b). (2.7)

The space of bulk fields (2.2) is then the space of defect fields living on the invisible defect
(labelled by R0), so that H = H0←0.

Let us choose, once and for all, for each pair a, b a particular defect field φa←b ∈ Ha←b.
For the construction below to work this choice cannot be arbitrary, but is subject to the
following restrictions. First of all, φa←b has to be chiral. Second, we want all φa←b to
transform in the same representation. So let us fix a preferred representation label f ∈ I and
demand that φa←b is an element of the sector Rf ⊗ R̄0 ⊂ Ha←b. If that sector does not appear
in Ha←b for a particular choice of a, b we set φa←b to zero. Finally, all φa←b have to be
proportional to the same ground state vector2 in Rf ⊗ R̄0. That is, we pick a vector |f 〉 ∈ Rf

which is annihilated by all positive modes and demand

φa←b ∝ |f 〉⊗|0̄〉 ∈ Rf ⊗ R̄0 ⊂ Ha←b, (2.8)

where |0〉 ∈ R0 denotes the vacuum state of V . The reason for this last restriction is that the
mechanism leading to the functional relation (1.2) will require two defect changing fields to
sum to zero, which is only possible if they are proportional. The sum of two defect changing
fields appears because two defects are fused in (1.2). If one were to look for functional relations
involving the fusion of three or more defects, this proportionality is no longer required and
condition (2.8) should be dropped.

The OPE of defect fields can be computed using the TFT approach as in [28]. Rather than
reviewing the details, I will quote some results below and sketch the relevant calculations in
appendix A.2. (As an aside, an immediate implication of the TFT approach is that in the Cardy
case one can use the same OPE coefficients for chiral defect fields as for boundary fields, and
the latter are known from [31].) It is convenient to fix the normalization of the defect fields in
terms of constants ηab ∈ C such that

φa←b(x)φb←a(0) = ηabηbaF(ff a)a

b0 · x−2hf 1a←a + (other), (2.9)

where hf is the conformal weight of the chosen ground state |f 〉 ∈ Rf and 1a←a is the identity
field3 on the a-defect. The constants F(ijk)l

pq and G(ijk)l
pq (to appear soon) are entries of the fusing

matrix and its inverse, respectively, and describe the transformation behaviour of four-point
conformal blocks. They appear in abundance when evaluating expressions obtained in the
TFT approach, and are briefly reviewed in appendix A.1. Explicit expressions for minimal
models are given in appendix A.3.

When collapsing a defect-bubble in the presence of defect fields, one finds the identities
(see appendix A.2)

d cb a

e

φa←b

= ηab

ηcd
G(f ae)d

bc

d c

φc←d

2 While for the minimal model the space of ground states in an irreducible representation is one-dimensional (and
given by multiples of the highest weight vector), for example for a ŝu(2)k-representation of spin j it is 2j + 1-
dimensional.
3 In fact, instead of x−2hf 1 the correct expression actually is V 0

ff (|f 〉, x)|f 〉 = Cx−2hf 1 + · · ·, where V 0
ff is an

intertwiner Rf × Rf → R0 and the constant C depends on the choice of V 0
ff and |f 〉. For minimal models one takes

|f 〉 to be the highest weight vector and normalizes the intertwiners such that C = 1, but, e.g. for ŝu(2)k this is not a
natural thing to do since the space of ground states in Rf need not be one-dimensional.
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as well as

d cb a

e

φa←b

= ηab

ηcd
G(f ae)d

bc

R(be)d

R(ae)c

d c

φc←d

. (2.10)

The constants R(ij)k are entries of the braiding matrix and describe how three-point blocks
behave under the exchange of insertion points. For minimal models these are4 just complex
phases determined by the conformal weights, cf (A.9).

2.2. Chirally perturbed defects

We would now like to perturb a defect of type a by the chiral defect field φa←a . For the fusion
procedure in section 2.4 to work without complications, let us assume that the perturbation by
φa←a does not require regularization, i.e. that the leading divergence in the OPE of φa←a(x)

and φa←a(y) is less singular than (x − y)−1. Comparing to (2.9), this implies in particular5

hf < 1
2 . (2.11)

Consider the cylinder C(L) of circumference L obtained by taking the quotient C(L) =
C/〈z �→ z + L〉, cf figure 1. For x1, . . . , xn ∈ R and z ∈ C let Da(x1, . . . , xn; z) be the
defect Da placed on the line R + z in C(L) with defect fields φa←a inserted at the points
z + x1, . . . , z + xn. The defect Da perturbed by φa←a will be denoted by Da(λφa←a; z) and is
obtained by inserting the exponential exp

(
λ

∫ L

0 φa←a(x + z) dx
)

on the defect line. Explicitly,

Da(λφa←a; z) =
∞∑

n=0

λn

n!

∫ L

0
dx1 · · · dxn Da(x1, . . . , xn; z). (2.12)

By changing integration parameters we see that Da(λφa←a; z) = Da(λφa←a; z + x) for all
x ∈ R. Furthermore, ∂

∂z̄
Da(λφa←a; z) = 0, since φa←a is a chiral field and so ∂

∂z̄
annihilates

each of the summands on the right-hand side of (2.12). Combining these two observations, it
follows that

∂

∂y
Da(λφa←a; iy) = 0; y ∈ R. (2.13)

So as already announced in the introduction, we can move a defect along the cylinder without
affecting the correlator under consideration, as long as the defect line does not cross any field
insertions or other defect lines. From here on the perturbed defect will just be denoted by
Da(λφa←a) instead of Da(λφa←a; z).

Note that Da(λφa←a) still commutes with the anti-holomorphic modes of the chiral
algebra,

[Wm,Da(λφa←a)] = 0. (2.14)

Due to the simple decomposition (2.2) of the space of states in the Cardy case, and since we
know that Da(λφa←a) preserves the anti-holomorphic representation of each sector Rk ⊗ R̄k̄ ,
it has no choice but to also preserve the holomorphic representation. Thus, it maps each sector
Rk ⊗ R̄k̄ to itself.

4 This statement depends on the basis of intertwiners Ri × Rj → Rk one chooses. So ‘these are’ should really be
replaced by ‘there is a basis of intertwiners such that these are’.
5 Since we are explicitly allowing non-unitary theories (otherwise the minimal models would not yield examples of
the construction described here), fields with negative weights are possible and the coupling to the identity field does
not necessarily give the leading singularity.
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Finally, since Da(λφa←a) commutes with the anti-holomorphic component T̄ of the
stress tensor one can easily compute the reflection and transmission coefficients of the defect
as defined6 in [20], resulting in the reflection being 0 and the transmission being 1, independent
of the value of λ.

2.3. Perturbations by defect changing fields

On a superposition a + b of defects, apart from perturbing by the defect fields φa←a and φb←b

one can also perturb by the defect changing fields φa←b and φb←a . The corresponding defect
operator is

Da+b(λaaφ
a←a + λbbφ

b←b + λabφ
a←b + λbaφ

b←a). (2.15)

When expanding out the exponential as in (2.12), only terms with the same number of φa←b

insertions as φb←a insertions can contribute. This is so since φa←b(x)φa←b(y) = 0 and
φa←b(x)φa←a(y) = 0, and hence every φa←b insertion must at some point (possibly after a
number of defect preserving insertions) be paired off with a φb←a insertion. In particular,
if only φa←b is involved in the perturbation, but not φb←a , no terms involving the defect
changing field can contribute to the expansion of the exponential in the perturbed operator.
Thus we have the identity

Da+b(λaaφ
a←a + λbbφ

b←b + λabφ
a←b) = Da+b(λaaφ

a←a + λbbφ
b←b). (2.16)

Since the right-hand side contains no contribution mixing the two defects, the perturbed
operator is just the sum of the two individual perturbations,

Da+b(λaaφ
a←a + λbbφ

b←b) = Da(λaaφ
a←a) + Db(λbbφ

b←b). (2.17)

That a perturbation of a superposition of elementary defects by a defect changing field
φa←b without its partner φb←a does not affect the defect operator was already noted in [3].
It is also pointed out there that the defect condition itself does change under the perturbation
(in the example considered there, the twisted Hamiltonian becomes non-diagonalizable). It is
only the defect operator that is unaffected.

2.4. Fusion of chirally perturbed defects

As we have seen in section 2.2, correlators on C(L) are independent of the precise location of
a chirally perturbed defect. One can thus insert a defect circle of type a, perturbed by λφa←a ,
and another of type b, perturbed by µφb←b, at a finite distance from each other and take the
limit of vanishing distance without encountering a singularity (see figure 1). In other words,
the composition of the chirally perturbed defect operators Da(λφa←a) and Db(µφb←b) is well
defined. Suppose that the unperturbed defects a and b fuse to a �b = c1 + · · ·+cn. To compute
the result of the composition, we expand out the exponentials generating the two perturbations

6 In [20] these coefficients were only defined for conformal defects. For non-conformal defects (with still critical
bulk) one should place the defining correlator given in [20, equation (2.10)] on a cylinder and take the limit where
the insertion points are far from the defect. For chirally perturbed defects that does not make a difference, since the
correlators are identically zero. A related quantity defined directly for off-critical (and also critical) bulk and defect
is the ‘entropic admittance’ introduced in [32].

8
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and use identities of the form

0 L

φb←b φb←b

φa←a

bb

a

=
n∑

i,j,k=1

0 L

ci cj ck ci

φb←b φb←b

φa←a

b b b b

b

a
aa

a

.

(2.18)

on each term. One can then apply (2.10) to collapse each of the defect bubbles to obtain the
appropriate defect (changing) field. For example, collapsing the three bubbles in example
(2.18) results in insertions of, in the same order as in (2.18),

ηbb

ηcj ci
G(f ba)ci

bcj

R(ba)ci

R(ba)cj
· φcj ←ci ,

ηaa

ηckcj
G

(f ab)cj

ack
· φck←cj ,

ηbb

ηcick
G(f ba)ck

bci

R(ba)ck

R(ba)ci
· φci←ck .

(2.19)

Altogether we find that

Da(λφa←a)Db(µφb←b) = Dc1+···+cn

⎛
⎝ n∑

i,j=1

ξijφ
ci←cj

⎞
⎠ , (2.20)

where

ξij = λ · ηaa

ηcicj
G

(f ab)cj

aci
+ µ · ηbb

ηcicj
G

(f ba)cj

bci

R(ba)cj

R(ba)ci
. (2.21)

In this computation we have implicitly used the fact that the perturbation does not require
regularization, so that contributions in (2.18) with coinciding insertion points have zero weight
in the integral. Also, as usual it is understood that the G-entries which are not allowed by the
fusion rules are set to zero. (This boils down to multiplying ξij by Nf ci

cj .)

2.5. Commuting defect operators

Recall from (2.4) that the unperturbed defect operators act as a multiple of the identity on each
sector Rk ⊗ R̄k̄ of the space of states. Consequently, they all commute amongst each other,

[Da,Db] = 0 for all a, b ∈ I. (2.22)

As an aside it is worth pointing out that all defects preserving V ⊗ V̄ commute if and
only if Zij ∈ {0, 1} for all entries of the modular matrix Z specifying the decomposition of the
space of bulk states [33–35].
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Since chirally perturbed defect operators map each sector Rk⊗R̄k̄ to itself, (2.22) continues
to hold if only one of the two defects is perturbed,

[Da,Db(λφb←b)] = 0 for all a, b ∈ I, λ ∈ C. (2.23)

Two perturbed defects will in general not commute since both defect operators no longer
act as a multiple of the identity on each sector Rk ⊗ R̄k̄ . However, as announced in (1.1), we
will see that in special cases there can be exceptions.

2.6. Defect fusion with one channel

Suppose that two defects a and b fuse to a single elementary defect a � b = c rather than to
a superposition. Suppose further that b allows for a chiral defect field in representation Rf .
Then from (2.20) we can read off

DaDb(λφb←b) = Dc(ξφc←c), ξ = λ · ηbb

ηcc
G(f ba)c

bc . (2.24)

This relation will be needed when discussing the examples further below.

2.7. Defect fusion with two channels

Suppose that two defects a and b fuse to two different elementary defects, a � b = c + d, and
that both defects a and b allow for a chiral defect field in representation Rf . Then from (2.20)

Da(λφa←a)Db(µφb←b) = Dc+d(ξccφ
c←c + ξddφ

d←d + ξcdφ
c←d + ξdcφ

d←c), (2.25)

where the couplings to the defect changing fields are given by

ξcd = λ · ηaa

ηcd
G(f ab)d

ac + µ · ηbb

ηcd
G(f ba)d

bc

R(ba)d

R(ba)c
,

ξdc = λ · ηaa

ηdc
G(f ab)c

ad + µ · ηbb

ηdc
G(f ba)c

bd

R(ba)c

R(ba)d
.

(2.26)

Provided that G(f ba)d

bc or G(f ba)c

bd are nonzero, we can now set ξcd = 0 or ξdc = 0 by choosing
µ appropriately. Say for µ = µ+(λ) we have ξcd = 0 and for µ = µ−(λ) we have ξdc = 0.
Substituting this into ξcc and ξdd determines these constants solely in terms of λ. Let us denote
the resulting functions as ξ±

cc(λ) and ξ±
dd(λ). Combining (2.16) and (2.17) we finally obtain

the identity, for ε = ±,

Da(λφa←a)Db(µ
ε(λ)φb←b) = Dc

(
ξε
cc(λ)φc←c

)
+ Dd

(
ξε
dd(λ)φd←d

)
. (2.27)

This is the prototypical functional relation for the chirally perturbed defect operators which
we will use in the investigations below. If, e.g. the defect c does not allow for a chiral defect
field in representation Rf , (2.27) still remains valid, but with Dc

(
ξ±
cc(λ)φc←c

)
replaced by the

unperturbed defect Dc. The same holds for the defect d.
To reiterate a remark from the introduction, finding this relation only relied on the fact

that the unperturbed defects a and b fuse to a superposition of two elementary defects. If a � b

decomposes into more than two summands, fixing µ in terms of λ will generally not suffice
to remove enough defect changing fields to allow us to split the perturbed defect operator
Dc1+c2+c3+···(· · ·) into a sum of individual defect operators.

10
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2.8. Defects with su(2)-type fusion

Suppose there exists a subset {(m)|m = 0, 1, . . . , k} of elementary defects with ŝu(2)k-fusion
rules,

(m) � (n) =
min(m+n,2k−m−n)∑

s=|m−n|,2
(s), (2.28)

where the ‘, 2’ means that the sum is taken in steps of two. Suppose further that the defects
(m) with m = 1, 2, . . . , k − 1 support a chiral defect field in representation Rf . Since the
fusion of defect lines (in the Cardy case) agrees with that of the irreducible representations
labelling the defect, this implies f = (2). Furthermore, since

D(1)D(s) = D(s−1) + D(s+1) for s = 1, 2, . . . , k − 1, (2.29)

we can apply (2.27). For example, for s = 1 one finds

D(1)(λφ1←1)D(1)(µφ1←1) = D(0)+(2)(ξ02φ
0←2 + ξ20φ

2←0 + ξ22φ
2←2), (2.30)

(φ0←0 is zero) with

ξ02 = η11

η02
G(211)2

10 (λ − ω−1µ), ξ20 = η11

η20
G(211)0

12 (λ − ωµ),

ξ22 = η11

η22
G(211)2

12 (λ + µ),

(2.31)

where ω = −R(11)0/R(11)2 = 0. (For Nij
k = 1, R(ij)k describes a basis transformation of a

one-dimensional space and hence is never zero.) From (2.30) we can learn two things. First,
setting µ = ω±1λ results in the functional relation

D(1)(λφ1←1)D(1)(ω
±1λφ1←1) = id + D(2)

(
η11

η22
G(211)2

12 (1 + ω±1)λφ2←2

)
. (2.32)

Second, if one expands out the exponential generating the perturbation in (2.30), as remarked
already in section 2.3, for each insertion φ0←2 there has to be a corresponding insertion of
φ2←0. Thus, for all non-vanishing terms in the expansion the coefficients ξ02 and ξ20 only
appear in the combination ξ02ξ20 = (const)(λ2 − (ω + ω−1)λµ + µ2), which is symmetric
under the exchange of λ and µ. Since also ξ22 is invariant under λ ↔ µ we see that

D(1)(λφ1←1)D(1)(µφ1←1) = D(1)(µφ1←1)D(1)(λφ1←1) for all λ,µ ∈ C. (2.33)

Under the assumption (which will be checked in the examples below) that there are no
‘accidental zeros’ ξ(λ) = 0 in applying relation (2.27), starting from the above result one
can prove by induction that in fact all of the perturbed defect operators mutually commute for
arbitrary values of the coupling constants,

[D(m)(λφ1←1),D(n)(µφ1←1)] = 0 for m, n = 1, 2, . . . , k − 1 and λ,µ ∈ C. (2.34)

For m = 0 or m = k this also holds due to (2.23). The induction argument is as follows. From
(2.23) and (2.33) we know that (2.34) holds for m, n � 1. Suppose now that we have already
proved (2.34) for m, n � M . By (2.27) there are constants a, b, c ∈ C such that (omitting the
φ1←1 for brevity)

D(1)(λ)D(m)(aλ) = D(m−1)(bλ) + D(m+1)(cλ). (2.35)

Then by induction assumption, for m, n � M ,

[D(1)(λ)D(m)(aλ),D(n)(µ)] = D(1)(λ)[D(m)(aλ),D(n)(µ)]

+ [D(1)(λ),D(m)(aλ)]D(n)(µ) = 0. (2.36)

11
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On the other hand,

[D(1)(λ)D(m)(aλ),D(n)(µ)] = [D(m−1)(bλ) + D(m+1)(cλ),D(n)(µ)]

= 0 + [D(m+1)(cλ),D(n)(µ)]. (2.37)

Provided that c = 0 (this is the assumption that there are no ‘accidental zeros’) we thus get
[D(m)(λ),D(n)(µ)] = 0 for m � M +1, n � M and all λ,µ ∈ C. Running the above argument
again with n = M + 1 then shows that (2.34) also holds for m, n � M + 1.

3. Examples

3.1. Virasoro minimal models

Consider the A-series Virasoro minimal model M(p, p′). It has central charge

c = 13 − 6(t + t−1); t = p/p′. (3.1)

The irreducible representations Rr,s of the Virasoro (vertex) algebra at that central charge are
labelled by entries (r, s) of the Kac-table with 1 � r < p and 1 � s < p′. The conformal
weight of the highest weight state in the representation Rr,s is

hr,s = ((dr,s)
2 − (1 − t)2)/(4t); dr,s = r − st. (3.2)

The labels (r, s) and (p − r, p′ − s) denote the same representation. We choose the
distinguished representation to be

f = (1, 3). (3.3)

We then have hf = −1 + 2t and so the condition hf < 1
2 amounts to t < 3

4 .
As described in section 2, defects are labelled by irreducible representations, in this case

by Kac-labels (r, s) modulo the identification (r, s) ∼ (p − r, p′ − s). There are two subsets
with su(2)-type fusion rules, namely the defects labelled by (r, 1) and by (1, s). Consider the
subset {(1, s)} first. The identification with the notation in section 2.8 is (m) = (1,m + 1). As
discussed there, the only non-trivial chiral perturbation possible for the defect labelled (1) is
f = (2), which is precisely the choice (3.3). The same reasoning for the subset {(r, 1)} would
give f = (3, 1), but for a given value of t only one of the two is a relevant perturbation (in
particular, they can never both obey h < 1

2 ), and so we choose p and p′ such that f = (1, 3)

is relevant.
It is convenient to fix the normalization constant of the defect field φ(r,s)←(r,s) to be

η(r,s)(r,s) = �(t)�(2 − 3t)

�(1 − t + dr,s)�(1 − t − dr,s)
. (3.4)

Substituting this into (2.9) and using (A.13) results, with φ ≡ φ(r,s)←(r,s) and d ≡ dr,s ,

φ(x)φ(0) = sin(π(t − d)) sin(π(t + d))

sin(πt) sin(3πt)

�(2 − 3t)�(2t)

�(2 − 2t)�(t)
· x−2hf 1a←a + (other). (3.5)

Next we apply (2.25) for a = (1, 2) and b = (1, s). Substituting (3.4), (A.9), (A.10) and
(A.12) into (2.26), after a while one finds, for ν = ± and d ≡ d1,s ,

ξ(1,s+ν),(1,s+ν) = λ · sin(πt)

sin(πνd)
+ µ · sin(π(t + νd))

sin(πνd)
,

ξ(1,s+ν),(1,s−ν) = 1

η(1,s+ν),(1,s−ν)

�(2 − 3t)�(νd)

�(1 − t + νd)�(1 − 2t)
(λ − µ · eiπν(1−d)).

(3.6)

So if we set µ = λ eiπε(1−d), then for ε = 1 we have ξ(1,s−1),(1,s+1) = 0, while for
ε = −1 we get ξ(1,s+1),(1,s−1) = 0. In either case the defect changing fields do no

12
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longer contribute the perturbed defect operator. Furthermore, for this value of µ one finds
ξ(1,s+ν),(1,s+ν) = λ eiπε(1−d−νt), which results in the functional relation

D(1,2)(λφ)D(1,s)(e
iπε(1−d)λφ) = D(1,s−1)(e

iπε(1−d+t)λφ) + D(1,s+1)(e
iπε(1−d−t)λφ). (3.7)

Substituting further d = 1 − st and q = eiπt leads to the relation quoted in (1.2). Since there
are no ‘accidental zeros’ in the coupling constants on the right-hand side of (3.7), the recursive
argument leading to (2.34) applies and we obtain

[D(1,s)(λφ),D(1,s ′)(µφ)] = 0 for all s, s ′ = 1, . . . , p′ − 1, λ, µ ∈ C. (3.8)

As before, in this relation, as well as in (3.7), if the defect does not support the chiral h1,3-
defect field, D(λφ) stands for the unperturbed defect operator D. The results (3.7) and (3.8)
can be extended to all defects D(r,s) as follows. Due to the fusion rule (r, 1) � (1, s) = (r, s)

we can apply (2.24), and substituting (3.4) and (A.14) yields

D(r,1)D(1,s)(λφ) = D(r,s)((−1)r−1λφ). (3.9)

This determines the perturbed operators D(r,s)(λφ) in terms of the unperturbed operators
D(r,1) and the perturbed operators in the subset {(1, s)}. Note also that by (2.23) we
have [D(r,1), D(1,s)(λφ)] = 0. This implies that (3.8) also holds for general defects,
establishing (1.1).

To obtain the functional relation (1.3) now that we have established (1.2) works along the
same lines as the corresponding calculation for fused row-transfer matrices [11]. First note
that setting s = 2, ε = −1 and replacing λ → qλ in (1.2) one obtains (1.3) for s = 2. If (1.3)
holds for s � m then on the one hand,

D(1,m)(q
mλφ)D(1,2)(λφ)D(1,m+1)(q

m+1λφ)

= (D(1,m−1)(q
m+1λφ) + D(1,m+1)(q

m−1λφ))D(1,m+1)(q
m+1λφ), (3.10)

and on the other hand, fusing the second and third defect,

D(1,m)(q
mλφ)D(1,2)(λφ)D(1,m+1)(q

m+1λφ)

= D(1,m)(q
mλφ)(D(1,m)(q

m+2λφ) + D(1,m+2)(q
mλφ)). (3.11)

Subtracting the two expressions and using that (1.3) holds for s = m shows that it also holds
for s = m + 1.

The final property of D(1,s)(λφ) to be derived is the behaviour under reflection s → p′−s.
This can be deduced by fusing with the defect D(1,p′−1). Substituting (3.4) and (A.15) into
(2.24) gives

D(1,p′−1)D(1,s)(λφ) = D(1,p′−s)((−1)pλφ). (3.12)

The action of D(1,p′−1) on the sector Rr,s ⊗ R̄r,s of the space of bulk states is given by
(2.4) in terms of the modular S-matrix, which for minimal models can be found, e.g. in [36,
chapter 10],

D(1,p′−1)|Rr,s⊗R̄r,s
= (−1)rp

′+sp+1idRr,s⊗R̄r,s
. (3.13)

So altogether,

D(1,p′−s)(λφ)|Rr,s⊗R̄r,s
= (−1)rp

′+sp+1D(1,s)((−1)pλφ)|Rr,s⊗R̄r,s
. (3.14)

For the minimal model M(2, p′) one has r = 1 and p′ odd, and this reduces to the reflection
property D(1,p′−s)(λφ) = D(1,s)(λφ) already observed for the T-operators in [7].
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3.2. Liouville theory

The central charge of Liouville theory is usually parametrized as c = 1+6Q2 with Q = b+b−1

and the conformal weight of a highest weight vector as hα = α(Q − α). For example, the
Verma modules of conformal weight h−b/2 and h−b contain null-vectors at levels 2 and 3,
respectively.

While conformal boundary conditions have been analysed in great detail [37–40],
topological defects in Liouville theory have so far not been studied. However, given the
general pattern that in the Cardy case topological defect lines are labelled in the same way as
boundary conditions, it seems a reasonable guess that this will remain true also in Liouville
theory. The considerations below are based on this assumption.

There is a discrete family D(m,n) of defects for m, n � 1 corresponding to the point-
like ZZ-boundary conditions, and a one-parameter family Dσ of defects corresponding to
FZZT-boundary conditions. Assuming further that as in the Cardy case for rational CFTs, the
fusion of defect lines agrees with that of the representations labelling the defects, we have
(1, 2) � (σ ) = (

σ − b
2

)
+

(
σ + b

2

)
, and (1, 2) � (m, n) = (m, n − 1) + (m, n + 1) for n � 2. The

defect (1, 2) is thus a candidate to give rise to functional equations between perturbed defect
operators.

The spectrum of boundary fields on the boundary condition labelled (1, 2) consists of the
irreducible degenerate representations with labels (1, 1) and (1, 3) [39]. The representation
(m, n) has conformal weight hα with α = (1−m)b−1 + (1−n)b. Since the spectrum of chiral
defect fields should coincide with the spectrum of boundary fields, the defect (1, 2) supports a
chiral defect field of weight h−b = −2b2 − 1, which is always less than 1

2 . This chiral defect
field is also allowed for all defects (m, n) with n � 2. As for minimal models, the defects
(1, n) form a subset with su(2)-type fusion rules, albeit now only truncated from below by
(1, 1), but not from above. In fact, relations (1.2) and (1.3) for the perturbed defect operators
will hold in precisely the same form as for minimal models if we set q = e−iπb2

. To see this,
note that if we replace

t → −b2, d → b(2α − Q) (3.15)

in (3.1) and (3.2) we obtain precisely the expression for the Liouville central charge and the
conformal weight of hα . Since the derivation of the F-matrix entries (A.10) just relied on
the existence a level 2 null vector, the corresponding Liouville expressions are obtained by
the same replacement (as can be checked explicitly by comparing to the expression in, e.g.
[40, appendix B]). The same holds for the F-matrix entry (A.13), as this was obtained from
(A.10) and the pentagon identity. The calculations in section 3.1 leading to (1.2) and (1.3)
will therefore go through in the same way if applied to the (1, n)-defects in Liouville theory.

The same reasoning applies to the defect (2, 1), which is related to (1, 2) via b ↔ b−1. As
opposed to the minimal model case, for Liouville theory both the (1, 2)- and the (2, 1)-defect
have a chiral defect field of weight less than 1

2 . For the (2, 1)-defect this is the field of weight
h−b−1 = −2b−2 − 1.

Liouville theory in the presence of (m, n)-defects will not be unitary, in the sense that
some spectra contain complex conformal weights. For example, the spectrum of open states
on a strip with boundary conditions σ and (m, n) will have complex conformal weights unless
m = n = 1 [39]. Since this spectrum is the same as that of a strip with boundary conditions σ

and (1, 1) (which by itself has a discrete and real spectrum) on which a (m, n)-defect line has
been inserted parallel to the boundary, we see that in this case the presence of the (m, n)-defect
leads to complex weights in the spectrum.
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4. Conclusions

In this paper, I have shown that in certain cases chirally perturbed defect operators satisfy
functional relations. For a subset where the unperturbed defects have su(2) fusion rules, these
functional relations are well known from the study of integrable models as T-system. The
perturbed defects in this subset mutually commute, and so it is possible to choose the common
eigenvectors independent of the coupling constants. The eigenvalues can then be computed
with the help of the thermodynamic Bethe ansatz.

The idea leading to the functional relations is simply to adjust the couplings of the two
perturbed defects to be fused in such a way that the defect changing fields cannot contribute
to the operator of the fused defect.

It is also worth pointing out that while in this paper only perturbations by holomorphic
defects fields were considered, the analysis can of course be repeated for anti-holomorphic
defect fields. It is immediate from the TFT representation of defect correlators (see
appendix A.2) that in the Cardy case the operators for defects perturbed by a holomorphic
defect field φ will commute with those of defects perturbed by an anti-holomorphic field ψ̄ ,

[Da(λφ),Db(µψ̄)] = 0 (4.1)

for all defect types a, b, all defect fields φ, ψ̄ and all coupling constants λ,µ ∈ C. The fusion
of a defect perturbed by φ and a defect perturbed by ψ̄ results in a defect perturbed by a linear
combination of φ and ψ̄ .

Many possible directions for further study remain. Some of them are as follows.

• In this paper, only perturbations that did not require regularization were considered. An
obvious task is to extend the method to include all relevant and marginal perturbations.

• The defect operators constructed in the minimal model example are close cousins of the
T-operators of [7, 14, 15]. In these papers also Q-operators are defined, which together
with T obey Baxter’s TQ-relation. An interpretation of the Q-operators in terms of defects
remains to be found.

• Here perturbed operators were studied only in the charge-conjugation modular invariant
theory for a given rational chiral algebra. However, the methods in [5, 28] provide the
tools to do the same computation also for other local RCFTs, such as, e.g. the D-series and
the exceptional modular invariants for minimal models and ŝu(2)k . Systems of functional
relations are known for various CFTs, see, e.g. [41–43], and one could try to obtain them
also with the methods presented here. The generalization to super-conformal models
(cf [44]) is another open point.

• As mentioned a number of times, the functional relations satisfied by the perturbed defect
operators make it possible to determine its matrix elements at finite values of the coupling
constant (at least numerically). One important application of this is the investigation of
boundary flows. It would be interesting to carry out a systematic investigation for rational
CFTs such as WZW models, and it might also be possible to study boundary flows in
non-compact theories, in particular Liouville theory (see, e.g. [45, 46] for existing results),
in this way.
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Appendix

A.1. Fusing matrices

Recall that we assume that the chiral algebra V has a finite number of irreducible
representations, indexed by a set I, and that for simplicity we also demand the fusion rule
coefficients to obey Nk

ij ∈ {0, 1} for all i, j, k ∈ I. Let us choose a basis of conformal
three-point blocks, that is, multilinear maps7

V k
ij (·, z) : Ri × Rj −→ Rk, (vi, vj ) �→ V k

ij (vi, z)vj , (A.1)

which intertwine the action of V in a suitable way, see, e.g. [47, 48] (or [28, chapter 5], which
uses the same conventions as here).

Fusing matrices describe a change of basis in the space of conformal four-point blocks.
Consider four representations Ri, Rj , Rk and R∗

l (the dual of Rl) of the chiral algebra V ,
placed at z,w, 0 and ∞, respectively. There are several ways to give a basis for the space of
conformal four-point blocks R∗

l ×Ri ×Rj ×Rk → C in terms of the intertwiners (A.1). Two
of them are

B1 = {
(ϕl, vi, vj , vk) �→ ϕl

(
V l

ip(vi, z)V
p

jk(vj , w)vk

) ∣∣p ∈ I
}

(A.2)

and

B2 = {
(ϕl, vi, vj , vk) �→ ϕl

(
V l

qk

(
V

q

ij (vi, z − w)vj , w
)
vk

) ∣∣ q ∈ I
}
. (A.3)

The fusing matrices F(ijk)l are obtained by expressing basis vectors of B1 in terms of those
of B2,

V l
ip(vi, z)V

p

jk(vj , w) =
∑
q∈I

F(ijk)l
pq · V l

qk

(
V

q

ij (vi, z − w)vj , w
)
. (A.4)

For minimal models it is enough to evaluate this relation on the highest weight states of
the corresponding representations. This then results in the usual calculation comparing the
asymptotic behaviour of conformal four-point blocks [36, chapter 8].

Definition (A.4) of F(ijk)l can be expressed graphically as

i j k

p

l

=
∑
q∈I

F(ijk)l
pq

i j k

q

l

. (A.5)

The inverse G(ijk)l of F(ijk)l is expressed accordingly as

i j k

q

l

=
∑
p∈I

G(ijk)l
qp

i j k

p

l

. (A.6)

7 Actually, the intertwiners are linear maps from Ri to formal Laurent series zhk−hi−hj Hom(Rj , Rk)[[z±1]], but I
will not make this explicit in the notation below. More details can be found in [47].
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The braiding matrix R(ij)k in turn is defined by analytic continuation of three-point blocks and
has the graphical representation

i j

k

= R(ij)k

i j

k

. (A.7)

Some relations between F, G and R are collected, e.g. in [25, chapter 2.2].

A.2. Defect correlators in the TFT approach

In the TFT approach to rational CFT [26, 27], two-dimensional CFT correlators are expressed
in terms of correlators of a three-dimensional topological field theory on a three-manifold
with boundary. The relevant manifold is simply given by the surface considered in the
CFT correlator times an interval. Field insertions and defect lines are encoded by placing
appropriate Wilson lines (ribbons) inside this three-manifold. The treatment of defects is
described in detail in [5, 28]. For example, the ribbon graph corresponding to an insertion of
a chiral defect field in representation Rf is8

a b

φa←b

�−→ ηab · a b
f

. (A.8)

where ηab ∈ C describes the normalization of φa←b. The coupling to the identity in the OPE
of two defect fields quoted in (2.9) is then obtained by taking the summand for k = 0 in

a b a

φa←b φb←a

�−→ ηab ηba
a b a

f f

=
∑
k∈I

ηab ηba F(ff a)a

bk

a a

k

f f

.

8 That the defect lines on the surface for the CFT and the ribbons inside the three-manifold for the TFT have opposite
orientation can be tracked back to the (in retrospective somewhat unfortunate) choice of convention in [25]. This is
discussed in more detail in [28, chapter 3.1].
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Finally, identities (2.10) amount to the following computations (the surfaces are rotated by 180◦

with respect to (2.10). The orientation conventions are such that the surface gets embedded in
the three-manifold ‘upside down’, see [28, chapter 3.1]):

c da b

e

φa←b

�−→ ηab

ba

e

c d
f

= ηab G(f ae)d

bc

c
a

e

c d
f

= ηab G(f ae)d

bc

c d
f

�−→ ηab

ηcd
G(f ae)d

bc

c d

φc←d

and

c da b

e

φa←b

�−→ ηab
ba

e

c d

f

= ηab
c db

a

e

f
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= ηab R(be)d

R(ae)c

ba

e

c d
f

= ηab R(be)d

R(ae)c
G(f ae)d

bc

c d
f

�−→ ηab

ηcd

R(be)d

R(ae)c
G(f ae)d

bc

c d

φc←d

A.3. F-matrix elements for minimal models

Let a, b, . . . be entries in the Kac-table, ha, hb, . . . be the corresponding conformal weights
and da, db, . . . be the d-values as in (3.2). Fix also 1 ≡ (1, 1), 2 ≡ (1, 2) and 3 ≡ (1, 3). The
braiding matrix is simply given by

R(ab)c = eπ i(ha+hb−hc). (A.9)

If a = (r, s), then for ε = ±1 denote by a + ε the Kac-label (r, s + ε). For ε, ν = ±1 one has

F(2ac)b
b+ε,a+ν = F(a2b)c

b+ε,a+ν = F(cb2)a
b+ε,a+ν

= F(bca)2
b+ε,a+ν = �(νda)�(1 − εdb)

�
(

1
2 (1 + dc + νda − εdb)

)
�
(

1
2 (1 − dc + νda − εdb)

) . (A.10)

This follows as usual from the transformation behaviour of a basis of solutions to a
level 2 null-vector equation [36, chapter 8]. From these basic F-matrix entries all others
can be obtained recursively via the pentagon identity, see, e.g. [31]. The relation between the
notation F used here and that of [48] (and also [31]) is

F(ijk)l
pq = Fpq

[
i j

l k

]
. (A.11)

Rather than using a recursive procedure, one can also directly compute with the closed form
expression for the F-matrices [49, 50] (collected, e.g. in [51, appendix A.1.1]), but for the
present application the recursive procedure is more convenient. The inverse G of the F-matrix
is related to F in a simple way (combine [25, equation (2.61)] with (A.9)

G(ijk)l
pq = F(kji)l

pq . (A.12)

Some specific F-matrix entries used in the main text are, for a ≡ (r, s),

F(33a)a
a1 = 1

1 − 3t

�(1 − t + da)�(1 − t − da)�(1 − t)�(2t)�(3t)

�(t − da)�(t + da)�(2 − 2t)�(t)�(t)
, (A.13)
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as well as, for r ≡ (r, 1), s ≡ (1, s) and a ≡ (r, s),

F(rs3)a
sa = �(1 − t + d1,s)�(t + dr,s)

�(1 − t + dr,s)�(t + d1,s)
. (A.14)

These have been obtained by starting from values (A.10) and applying one step in the recursive
procedure mentioned above. Finally, we also need, for p′ − 1 ≡ (1, p′ − 1), s ≡ (1, s) and
p′ − s ≡ (1, p′ − s),

F(p′−1,s,3)p′−s

s,p′−s = (−1)p
�(2 − t − st)�(st − t)

�(2 − t − (p′ − s)t)�((p′ − s)t − t)
. (A.15)
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